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ABSTRACT

In ord_cr to effectively drive a remote ground vehicle using video images, the operator must be
provided with a nawral, real-time video sequence and the imagery must be accurate and detailed
enough so that the operator can make mobility and survivability decisions. Unfortunately, high data
rate communication channels are often not feasible for this task. To accomplish remote driving using
a low data rate channel, video compression techniques must be incorporated. This paper discusses the
remote vehicle driving problem and describes several video compression algorithms that have been
implemented on PIPE, a real-time pipelined image processing machine. The paper then discusses
how these algorithms are evaluated on real-world remote driving tests. Finally, advanced techniques
for video compression are proposed.

1. Introduction

Remotely driving a ground vehicle involves an operator who sits at a remote control center and views video
images that are transmitted from one or more cameras mounted on the vehicle, While observing these images, the opera-
tor drives the vehicle by means of driving controls such as a steering wheel, brake pedal, accelerator pedal, etc. These
controls generate appropriate driving actvator signals which are transmitted to the vehicle. In order for the operator to
effectively drive the vehicle, the video images must be of sufficient quality and be updated as frequently as possible. Full
rate video transmission from the vehicle to the operator requires about 60 megabits/sec for 512 x 512 images with 8
bits/pixel at 30 frames/sec. However there are several problems with using the wide communication bandwidth required
for such transmission, First, wide bandwidth radic communication requires direct line of sight between the transmitter
and receiver. This is not feasible in realistic outdoor scenarios where vehicles are likely to be driven behind hills and
mountains and therefore hidden from direct view by the operator station. Wide bandwidth links are also relatively expen-
sive. Further, even if such a link were available, full rate video would use up a large part of the bandwidth allocations,
This would be particularly true if there were many vehicles being operated simultaneously, where full rate video might
fill up the entire communication spectrum. Fiber optic links, which have wide bandwidth communications capabilities,
also have several problems, including limited ruggedness, difficultics in deployment and retrieval, and the problem of
repairs.

Many of these difficulties can be overcome by utilizing narrow band radio links which have communication
bandwidths on the order of 100 kilobits/second. Since the full video required for teleoperation cannot be provided using
the narrow band links, efficient and effective techniques of real-time video compression offering compression ratios of
500:1 to 1000:1 must be developed. Compression ratios this large require more than conventional reduction techniques.
They require an examination of the fundamental requirements for remote driving.

2. Requirements for Remote Driving

A vision system that is usesl for remote driving can be evaluated in terms of how well it permits the remote opera-
tor to perform vehicle mobility operations. There are various factors that affect vehicle mobility. The first involves the
ability of the operator to make trafficability and movement decisions. These include:

1.  Local obstacle detection. The vision system should allow the operator to detect the following classes of local obsta-
cles:
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quate description of our work. It does not imply recommendation by the National Institute of Standards and Technology,
not that this equipment was necessarily the best available for the purpose.
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Depressions such as craters, holes, trenches and ruts.

Solid objects on the ground such as rocks, logs, and debris.
Vegetation such as heavy brush.

. Tall objects such as trees and telephone poles.

7. Local surface classification. The vision system should allow the operator 10 determine the kinds of surfaces sur-
rounding the vehicle. These surfaces would include swampy or soft soil, concrete, sand, mud, and grass. Also, this

includes snow, ice, or water on the surface. Finally, these would include ponds, lakes, and rivers.

3. Local surface orientation determination. The vision system should allow the slope of the local terrain to be deter-
mined visually, aithough this information can also be provided by a level detector or inertial navigation system on
the vehicle.

4. Local landmark recognition. The vision system should allow the operator to recognize local landmarks such as
trees, rocks, telephone poles, etc. The operator needs this information to perform local path planning.

5. Local path planning. The vision system should provide enough information for the operator to perform local path
planning. The information required includes the relative location of local obstacles, the location of classes of local
ground surfaces and their orientations, and the location of local landmarks. Further, the operator requires the spatial
relations among the obstacles, landmarks, and the ground surfaces. For example, spaces between objects must be
determined, as well as relative positions between objects not all of which are simultancously in the field of view of
the cameras.

6. Local path following. The vision system should provide enough information so as to be able to follow terrain
features such as toads, rivers, or vegetation.

A second factor that affects vehicle mobility involves the ability of the operator to visually maintain a sense of the
global vehicle location relative to the background and landmarks. These include the ability to identify landmarks and the
background, as well as the ability to track landmarks over time. Notice that the ability to maintain global orientation can
also be provided to the operator with the aid of an inertial navigation system or a compass on board the vehicle. This

allows the vehicle position and direction to be displayed on a map in front of the operator,

A third factor that affects vehicle mobility involves the ability of the operator to visually maintain a sense of the
motion parameters of the vehicle, such as speed, acceleration, and turning rate. Again, this can also be provided by
means of other sensors on board the vehicle, such as a speedometer or accelerometer.

Finally, the vision system should be able to provide the above capabilities under all weather and daylight condi-
tions, and under a variety of vehicle speeds.

In order to satisfy the requircments set forth above, two additional requirements should be met. First, the video
images should be displayed in real time. This means that the operator should have the appropriate visual information
quickly enough so that he can drive the vehicle interactively. Driving is typically a servoing operation which requires a
fast loop involving transmitting driving commands to the vehicle, getiing fast visual feedback, and using this feedback to
transmit additional driving commands.

A second requirement is that the video sequence that appears on the operator’s monitor should seem natural (e.g.,
smooth and continuous). This would minimize the training requirement for the operator, as well as Iimit adverse side
effects to the operator (such as headaches and nausea).

The requirements set forth above should be satisfied whether the vehicle is driven with full video or with
compressed video. A disadvantage of using video compression algorithms is that they take processing time, and many
algorithms result in degraded imagery. A challenge for video compression techniques is therefore to meet all the require-
ments set forth above, that is, to provide real-time video, to provide a natural video sequence, and to provide imagery
which is accurate and detailed enough so that the operator can make mobility decisions.

aeop

3. Approach

Our approach to the problem of video compression for remote driving is to use a hybrid method which combines
image processing techniques (i.e., techniques whose input is an image and whose output is a compressed image),
transform techniques (such as the discrete cosine transform), and temporal frame rate reduction (i.c., transmitting fewer
than 30 images per second). The sequence of evenis as they would occur in the system is as follows. Images are obtained
from one or more cameras mounted on-board the vehicle. These images then undergo compression using the hybrid tech-
nique. After the compressed code is transmitted over a communication link to the operator station, it is decompressed so

as to result in a sequence of full resolution images. The compressed images will be transmitted over the communication
link at a rate of at most a few per second. However, we want the images to be displayed on the operator’s monitor at
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30Hz. This requires an extrapolation procedure, which will be provided by a real-time image warping processor. This
procedure involves gencrating a realistic simulation of the imagery that would appear for the given camera (to be dis-
cussed further below).

Our plan for this project has been to first implement video compression algorithms on the PIPE real-time image
processing machine (to be described in more detail below). PIPE is excellent for quickly developing, testing and modify-
ing algorithms. PIPE was then integrated with a remote control vehicle system and the algorithms were evaluated on
real-world remote driving tests. Initial results of these tests are described below. After a subset of algorithms have been
chosen based on such tests, they will be reimplemented on special-purpose image processing boards which will reside

on-hoard the remote vehicle.

In the remainder of this paper, we describe the PIPE machine, we discuss compression algorithms implemented
thus far on PIPE, and we provide experimental results of real-world tests. A companion paper [2] presents the topic of
video compression in more detail and also provides details on the PIPE implementations of the compression algorithms.

4, PIPE

PIPE (Pipelined Image Processing Engine) is a multi-stage, multi-pipelined image processing device that was
designed for real-time robot vision applications. PIPE was conceived and designed at the National Institute of Standards
and Technology (formerly National Bureau of Standards) [3) working jointly with Aspex, Incorporated. It is currently
commercially available through Aspex. PIPE will accept images from a video camera at field rates -- 60 times per
second. PIPE’s basic cycle rate is 1/60 second.

The PIPE system is composed of up to eight identical modular processing stages, each of which contains two
image buffers, five look-up tables, three arithmetic logic units, and two neighborhood operators. Images are transferred
from stage to stage at field rate (60 images per second) by three concurrent pathways. The forward path allows traditional
pipelined and sequential processing. The recursive path from a stage output back to its input allows feedback and relaxa-
tion processing. The backward path from one stage to the previous stage allows for temporal operations. It also allows a
hypothesis image to be compared with an input image. The images in the three paths can be combined in arbitrary ways
on each cycle of a PIPE program, and the chosen configuration can change on different cycles. In addition, six video
buses allow images to be sent from any stage to any one or more stages.

Images can be processed in any combination of four ways on PIPE: point processing, spatial neighborhood process-
ing, sequence processing or Boolean processing. Point processing can be either a function of one or two input images
and includes simple arithmetic and logical operations such as scaling, thresholding, converting number systems, etc.
More complex arithmetic operations, trigonometric operations, comparisons, rotations, eic. can also be performed.

PIPE can perform up to two 3 x 3 neighborhood convolutions on each stage in parallel. Both neighborhood opera-
tors operate on the same image input, but can perform different neighborhood operations. The neighborhood operators
can be either arithmetic or Boolean.

Sequential processing works on a set of multiple images, e.g., sequences of images over time, a stereo pair of right
and left images, or multi-resolution images.

When performing Boolean processing, each pixel of information is considered to be composed of eight independent
bit planes, which are operated upon simultaneously. The neighborhood operators can be applied in a Boolean mode,
where the output is the combination of the 3 x 3 neighborhood using local operations on each of the eight bit planes.

5. Compression Techniques Implemented on PIPE

A number of data compression algorithms have been developed and demonstrated on PIPE. These include grey
level quantization, non-maxima suppression, foveal-peripheral simulation, image differencing, histogram slicing, binning,
Laplacian pyramids, Poisson interpolation, and linear predictive coding. The following briefly describes each of these
methods. We characterize the effectiveness of these algorithms by their entropy value. Details on how entropy is calcu-
lated are described in [2]. Note for now that the lower the entropy value, the greater the compression, Further details on
the implementations on PIPE may also be found in [2].

Grey scale quantization involves reducing the resolution of cach pixel in the image. As represented on PIPE, an
image pixel contains 8 bits. However, image resolution and contrast remain acceptable when three or even four low-
order bits are dropped. Thus the number of bits required to transmit an image can be reduced by 37.5% or 50% respec-
tively. When implemented on PIPE, the update rate of this method is one cycle or 1/60th of a second. The entropy
measurement is dependent on the number of low-cader bits that are dropped. It ranges between a value of 6.74 for a full
resolution image to 3.10 for an image in which four bits have been dropped.
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Non-maxima suppression is an image processing method which results in a binary edge image in which all edges
are one pixel wide. On PIPE, a Sobel edge operator is first applied to the input image. Then all edge points that are not
locally maximal in the edge gradient direction are eliminated. The update rate for this algorithm is two cycles (1/30th of
a second), and the entropy measure is 0.37. The compression ratio is very high since only one bit of information per
pixel is required.

The foveal-peripheral simulation is based on the biology of human vision. In humans, there is a very small area of
acute vision, surrounded by areas of degraded vision. Two methods were written based on this idea. In the first (Figure
1a), a square window of the image is displayed with full 8 bit resolution. This square is surrounded by concentric win-
dow bands containing 6 bits, 4 bits, 2 bits, and finally 1 bit of resolution. The full resolution window can be
repositioned and resized to meet the user’s requirements. The implementation of this method on PIPE has an update rate
of two cycles, or 1/30th of a second. For a square window measuring 60 x 60 pixels, the entropy measure is 2.02.

The second foveal-peripheral algorithm utilizes the concept of multi-resolution image processing. In multi-
resolution processing, a full sized image is successively sampled and reduced in resolution by a factor of two. Thus a
256 x 256 image is reduced to a 128 x 128 image which is reduced to a 64 x 64 image, etc. Using this technique, an
arbitrarily sized and positioned square window is displayed at its full resolution (Figure 1b). It is surrounded by a win-
dow band obtained from its next level of resolution which in tum is surrounded by a band at the next level in the
pyramid. Each level of the pyramid is successively more blusred, but requires fewer bytes of information. The imple-
mentation of this method on PIPE has an update rate of four cycles (1/15th of a second). For a square window measuring
60 x 60 pixels, the entropy measure is 4.05.

Image differencing is an effective compression technique when there is relatively little motion between successive
scenes in a sequence of images. For a stabilized camera mounted on a vehicle, the distant background will appear not to
move between successive images, while the foreground will appear to move. The difference image is generated by sub-
tracting an image at time t,_, from the image at time #, . All stationary regions of the image are eliminated and only
areas of motion are visible. Thus much less information than the full image sequence need be transmitted. The full
image sequence can be reconstructed from the difference images. In practice, good results have been achieved by
transmitting a full image every 8 seconds, and difference images every 1/30th of a second. At reconstruction, the
difference images are summed with the originally transmitted image to form a sequence of full images as follows:

toH{ti—toH(t -t )+ < 0 Hla—tat ) ln-

The update rate on PIPE for this method is one cycle (1/60th of a second) and a typical entropy measure for a difference
image is 2.01,

Tmage compression and reconstruction using decimation and Poisson interpolation [4] is achieved on PIPE by pass-
ing the input image through a Laplacian neighborhood operator and thresholding the resultant image such that strong
edges retain their grey level value while homogeneous regions are mapped to zero. This decimated image is transmitted
to the remote operator station. Reconstruction involves multiple itcrations of interpolation of the decimated image in
regions which had been homogeneous. The update rate for the decimation is two cycles, and the update rate for the
reconstruction is N cycles where N represents the number of iterations performed. Good results have been achieved by
using six iterations.

Linear predictive coding is the process by which the grey scale values at each pixel in two sequential images are
used to predict the grey scale value at a future point in time. Theoretically, this prediction is based on the assumption
that the intensity values at any given pixel location vary only slightly over time, when the length of time is relatively
short. Since the time between sequential images is small, the extrapolation of the grey scale values using a linear func-
tion is assumed to provide an accurate prediction. The delay time for the algorithm on PIPE is 1/10 second (6 cycles).

Binning is a term used to describe a general class of methods also known as histogram transformation, Once the
histogram of an image is obtained, ranges of grey scale values can be grouped together to a single value based on a
number of different criteria. Three methods of performing this grouping were investigated. One method was to con-
struct each bin from an equal range of grey scale values. Another method was to have each bin contain an equal integral
portion of the histogram curve. Histogram slicing, the third method, is accomplished by dividing the histogram of an
image according to the most populous grey scale values.

The Laplacian pyramid method of encoding an image [1] is based on both predictive and transform methods of
image compression. The prediction of a pixel’s value is based on a local Gaussian-weighted average of surrounding pix-
cls. These predicted values are subtracted from the original valucs so that a measure of the predicted error is produced.
The result is that only the predicted error, which requires fewer bits to be represented, and the low-pass filtered image,
which can be sampled, need to be encoded. This concept is repeated to produce a pyramid-like data structure. After the
encoded pyramid structure has been transmitted, it may be used to reconstruct the original image. On PIPE, the entire
encoding and decoding of a single image requires 51 cycles (0.85 seconds). The total entropy of all ransmitted images is
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6. Experimental Results

This section describes the performance of several video compression algorithms running on PIPE during real-world
remote driving experiments. The remotely controlled vehicle system we used was developed by AAI Corporation, The
vehicle itself was a six-wheeled off-road recreational vehicle. A color camera mounted on the vehicle obtained 512 x 512
pixel images with 8 bits each of red, green, and blue. The camera had a wide field of view -- 90 degrees. The full video
signal was transmitied to the remote operator through a radio link, and displayed on a monitor in front of the operator.
The operator could remotely control the steering, acceleration, and brakes through the radio telemetry link. The operator

did not have pan and tilt control of the camera. The maximum vehicle speed was about 30 miles per hour.

Our experiments were performed on a very gray, overcast day. PIPE was set up at the operator station, using as
input one of the three color channels returning from the vehicle. PIPE then performed real-time video compression on the
input images, and the results were displayed on the monitor and used by the operator to drive the vehicle. The tests were
performed with an experienced driver, who gave an impression of his ability to drive using the output of several PIPE
compression algorithms, All algorithms were tested on the AAI grounds in Hunt Valley, Maryland, both in a paved load-
ing dock area surrounded by buildings and on an uneven grassy field. We should note that the operator had considerable
experience driving this particular vehicle on the given test terrain. The algorithms tested and the impressions from the
driver are enumerated next.

1. When PIPE was connected to the operator station, the original 512 x 512 x 24 color video was switched to a 256
x 256 x 8 monochrome video. The visual contrast on the monitor dropped tremendously, but our test driver could
still drive the vehicle without serious problems.

2. Grey scale quantization involves reducing the resolution of each pixel in the image. When one low-order bit was
dropped, the driver’s response was a bit slower than with 8 bits per pixel. When two low-order bits were dropped,
there was not much additional change, When three low-order bits were dropped, there were stepped contrast grada-
tions, and the driver claimed to have better depth perception. The dropping of four low-order bits resulted in much
slower response -- the stepped contrast was worse and the driver felt that everything was out of focus, that objects
seemed to be flowing into one another, and that object boundaries were not sharp enough.

3. The non-maxima suppression algorithm results in a binary image containing thinned edges. The driver felt that this
was unusable for driving. In the loading dock area, only edges of buildings were visible,

4. We tried both of the foveal-peripheral algorithms. One involves a square window displayed with full 8 bit resolu-
tion surrounded by concentric window bands containing 6, 4, 2, and 1 bit of resolution, respectively (Figure 1a).
The driver felt that this was not really usable, partly because it was necessary to have a portion of the front of the
vehicle in the field of view, and the algorithm did not provide this with enough resolution, The driver stated that if
the bottom cenler portion of the screen, containing the front of the vehicle, had been used as the central high reso-
lution window by the algorithm, it might have been usable for driving.

5. The second foveal-peripheral algorithm, involving Tower spatial resolution concentric bands (Figure 1b), obtained
very similar results. The driver mainly used the high resolution area of the screen, and completely ignored the rest
of the image. It was most useful when the high resolution area covered the front of the vehicle.

6.  The image differencing algorithm, with a full image being transmitted every 30 images, resulted in a much slower
response by the operator than full video.

7. The Laplacian pyramid algorithm was not usable by the driver for two main reasons. First, the 850 millisecond
update rate of the algorithm on PIPE was too slow to be effective for driving at reasonable speeds. Second, the
output image continually changed even when the vehicle was stationary, thus further confusing the driver, This was
probably caused by noise in the images.

The primary difference between driving on the paved loading dock area and on the open field was that features in
the loading dock area were easier 1o recognize. On the open field, obstacles and features of the landscape were much
more difficult to recognize. The main difficulties that were encountered’ during the experiments, particularly when driving
in open terrain, were (1) global vehicle location relative to the background and landmarks was very difficult to deter-
mine, (2} the slope of the local terrain was very difficult to determine, (3) ditches, gullies, rocks, and other obstacles
were difficult to distinguish, (4) range from the vehicle to objects and terrain features were difficult to determine. Object
and terrain feature segmentation was very difficult in monochrome images. This was particularly true in the open field
where the main way of discriminating between objects and the field was by color -- the field was covered with green
grass and weeds, while objects and obstacles were brown, silver, or red. We believe that the wide field-of-view camera
may have contributed towards some of the difficulties. The wide view results in lower resolution of features in the image,
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as well as reduced parallax. The latter leads 1o poorer depth perception. Some of the difficulties may also have resulted
from the gray, overcast sky, since the poor lighting may have contributed to low contrast in the images.

It secemed quite important to be able 1o see a portion of the front of the vehicle in the image. This was useful
partly in establishing global vehicle location relative to the background, but mainly in perceiving clearance for the vehi-
cle and perceiving depth of objects.

One of the conclusions that we drew from these experiments is that remote driving using full color video is
difficult as is. Almost any compression technique which provides a high enough compression ratio will result in degraded
imagery. This will make remote driving even more difficult.

These experiments constitute only an initial set of tests. We plan to perform additional tests with all the techniques
described above. These tests will involve different kinds of cameras, mounted in different positions on the vehicle, and
under different lighting conditions.

7. Plans for Effective Video Compression

Based on our initial experiments, we also plan to examine a combination of the following elements to attain video
compression for remote driving:

1. rather simple image processing compression techniques, such as spatial and temporal sampling, dropping low-order
bits, or image differencing,

2.  transform techniques, such as the discrete cosine transform,

3.  realistic simulation of imagery at the operator station, allowing images to be transmitted at rates much slower than
video rates,

4.  graphic cues overlayed on the imagery at the operator’s monitor, allowing information such as the front of the
vehicle, the horizon line, or parallel lines extending forward from the sides of the vehicle to be graphically
displayed.

The first two elements above were discussed earlier. The third element is related to the work of Noyes and Sherni-
dan [6], who introduced the technique of using a locally situated forward-in-time telerobot simulator for remote robot
operation. This technique was developed to handle a time delay between the operator and the telerobot. With this tech-
nique, control signals are transmitted simultaneously to the simulator system and to the remote telerobot. The simulated
video is then superimposed onto the retumn video of the remote telecperation. This allows an operator to move the con-
trols and immediately see the effects of the control commands without having to wait for the return video. We feel that
this technique can be very powerful in the context of video compression for remote driving. The time delay between the
operator and the remote vehicle is due to two factors, the processing time of the compression algorithms and the time
delay due to temporal sampling of the video sequence -- an image is transmitied to the operator only a few times per
szcond, or even once every few seconds,

The most difficult problem in pursuing the simulation approach is generating a realistic simulation of the video
sequence as viewed from the cameras on board the vehicle. One approach to this is a technique that we will call non-
adaptive image warping. This technique, mentioned in a previous section, involves transmitting an image (called the
master image) relatively infrequently (perhaps once every few seconds), but then warping the master image in real time
to generate a sequence of simulated images for the operator [5]. These images would approximate those that would
appear in the camera. When a new image arrives from the vehicle, it becomes the master image and the procedure is
repeated. Because the warping technique is non-adaptive, all warping parameters are predetermined, resulting at times in
very poor simulated images.

Another approach to the simulation is one that we will call adaptive image warping. Figure 2 shows the concept
behind this approach. As with non-adaptive image warping, there is a master image transmitied periodically, and a
sequence of images generated by warping the master image. In the figure, let co be the pose of the camera when the
master image is taken, and let ¢; be the pose of the camera at some future point at which we want to generate a simu-
lated image. For some pixel po in the ¢, image, we know that the point P, in the scene corresponding to this pixel lies
along a ray from the camera focal point through the pixel p, out into the scene. In fact, the point P, is at the intersec-
tion of this ray with the first surface it meets. If we know the position of this surface from a scene model, then we can
determine P, . The pixel p; in ¢; corresponding 1o pixel py in ¢ is simply obtained by the intersection of the line con-
taining P, and the focal point of ¢; with the image plane of ¢; . Pixel p; will then be given the same grey level value as
pixel py. In practice, the point po cormresponding to pixel p; will lic in between pixels. Therefore, the grey value
assigned to pixel p; will be obtained by interpolating pixel values in a small neighborhood around py. When this pro-
cedure is carried out for every pixel in ¢; , we have the resulting warped image.

Briefly, the operation of adaptive image warping is as follows. A video image is transmitted from the remote vehi-
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cle to the operator station at the rate of, say, 1 frame per 3 seconds. Time-tagged vehicle navigation data is transmitted
from the vehicle continuously at 30 Hz. These data are used to estimate the position and orientation of the camera in the
scene during the simulated views. Time-tagged 3-D scene information is transmitted once every 3 seconds. Simulated
images are then generated at 30 Hz from the master image and from the navigation data and scene information. These
images are displayed to the operator and provide the approximate current vehicle scene. Because the vehicle’s pose is
always known to a high accuracy, any vehicle motion can be reflected instantly in the operator display. A Kalman filter
is applied to the navigation data so that a smooth extrapolation is obtained to the point in time at which the image is to
be displayed at 30 Hz.

Of fundamental importance to this approach is the ability to acquire, represent, and efficiently access a scene
model. The scene model should contain both large scale terrain features (hills, valleys, platcaus, efc.) as well as small
features (roads, trees, rocks, ditches, efc.). Such a model can be derived from a combination of sources such as digital
elevation terrain data, maps of natural features, maps of man-made features, three-dimensional information extracted
from camera images, and rangefinder data. The more accurate the acquired scene model, the better the visual simulation,
Therefore, even a simple scene model such as the assumption of a parallel ground plane will result in a simulation that

might be useful.

The fourth element that we propose for attaining effective video compression involves graphic overlays which
include the following:

1. The horizon line displayed on the screen. This may be used by the operator to visually exiract the real horizon line
when the video image quality is poor. If the scene model and navigation data (as required for adaptive image
warping) are available, then the position, orientation, and shape of the horizon line on the screen can be calculated.
If the navigation data are available without a reasonable scene model, then an artificial horizon can be created. An
artificial horizon is known to be of great assistance to vehicle piloting in the case of flying, particularly instrument
flying. Remote driving has many similarities to instrument flying.

2. Parallel lines displayed on the screen which extend forward from the sides of the vehicle [7]. This may help the
operator to determine whether there is clearance to maneuver between obstacles. Again, a good scene model will
allow accurate calculation of the position, orientation and shape of these lines on the screen, Without a reasonable
scene model, these lines can be approximated under the assumption that the ground is an extended plane.

3. The outline of the front of the vehicle displayed on the screen. A clear appearance of the vehicle on the screen (or
painted right below the screen) is necessary for effective remote driving.

8. Summary

This paper has described the remote vehicle driving problem and has presented criteria for evaluating vision sys-
tems used for remote driving. Several algorithms were then described that have been implemented as possible candidates
for a hybrid video compression system. The algorithms have been implemented on the PIPE real-time image processing
machine. Details on these implementations are presented in a companion paper [2). The PIPE has been integrated with a
remote control vehicle system and these algorithms were evalvated by means of real-world remote driving experiments.
The results of these experiments were presented. Finally, an advanced video compression approach using adaptive image
warping was proposed.
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Figure 1. Two compression techniques based on foveal-peripheral vision.

Figure 2. Adaptive image warping.
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